
NXLog Community Edition Reference
Manual

NXLog Ltd.

Version 2.10.2150, November 2018

Table of Contents
1. Man Pages. Ê1

1.1. nxlog(8) . Ê1
1.2. nxlog-processor(8) . Ê3

2. Configuration . Ê5
2.1. General Directives . Ê5
2.2. Global Directives . Ê6
2.3. Common Module Directives . Ê7
2.4. Route Directives . Ê12

3. Language. Ê15
3.1. Types . Ê15
3.2. Expressions . Ê15
3.3. Statements . Ê24
3.4. Variables . Ê26
3.5. Statistical Counters . Ê26
3.6. Functions . Ê28
3.7. Procedures . Ê31

4. Extension Modules . Ê34
4.1. Character Set Conversion (xm_charconv) . Ê34
4.2. Delimiter-Separated Values (xm_csv) . Ê35
4.3. External Programs (xm_exec) . Ê39
4.4. File Operations (xm_fileop) . Ê41
4.5. GELF (xm_gelf). Ê44
4.6. JSON (xm_json). Ê48
4.7. Key-Value Pairs (xm_kvp) . Ê51
4.8. Multi-Line Parser (xm_multiline) . Ê60
4.9. Perl (xm_perl) . Ê68
4.10. Syslog (xm_syslog). Ê71
4.11. WTMP (xm_wtmp) . Ê83
4.12. XML (xm_xml) . Ê84

5. Input Modules . Ê88
5.1. Fields . Ê88
5.2. DBI (im_dbi) . Ê88
5.3. External Programs (im_exec) . Ê89
5.4. Files (im_file) . Ê90
5.5. Internal (im_internal) . Ê93
5.6. Kernel (im_kernel) . Ê95
5.7. Mark (im_mark) . Ê96
5.8. EventLog for Windows XP/2000/2003 (im_mseventlog) . Ê97
5.9. EventLog for Windows 2008/Vista and Later (im_msvistalog) . Ê100
5.10. Null (im_null) . Ê105
5.11. TLS/SSL (im_ssl). Ê105
5.12. TCP (im_tcp) . Ê107
5.13. UDP (im_udp) . Ê108
5.14. Unix Domain Sockets (im_uds) . Ê109

6. Processor Modules . Ê111
6.1. Blocker (pm_blocker) . Ê111
6.2. Buffer (pm_buffer) . Ê112
6.3. Event Correlator (pm_evcorr) . Ê114
6.4. Filter (pm_filter) . Ê119
6.5. De-Duplicator (pm_norepeat) . Ê120
6.6. Null (pm_null) . Ê121
6.7. Pattern Matcher (pm_pattern) . Ê122

6.8. Format Converter (pm_transformer) . Ê125
7. Output Modules . Ê128

7.1. Blocker (om_blocker) . Ê128
7.2. DBI (om_dbi) . Ê128
7.3. Program (om_exec) . Ê131
7.4. Files (om_file) . Ê132
7.5. HTTP(s) (om_http) . Ê135
7.6. Null (om_null) . Ê137
7.7. TLS/SSL (om_ssl). Ê137
7.8. TCP (om_tcp) . Ê139
7.9. UDP (om_udp) . Ê140
7.10. Unix Domain Sockets (om_uds) . Ê141

Chapter 1. Man Pages

1.1. nxlog(8)

NAME

nxlog - collects, processes, converts, and forwards event logs in many different formats

SYNOPSIS

nxlog [-c conffile] [-f]

nxlog [-c conffile] -v

nxlog [-r | -s]

DESCRIPTION

NXLog can process high volumes of event logs from many different sources. Supported types of log processing
include rewriting, correlating, alerting, filtering, and pattern matching. Additional features include scheduling, log
file rotation, buffering, and prioritized processing. After processing, NXLog can store or forward event logs in any
of many supported formats. Inputs, outputs, and processing are implemented with a modular architecture and a
powerful configuration language.

While the details provided here apply to NXLog installations on Linux and other UNIX-style operating systems in
particular, a few Windows-specific notes are included.

OPTIONS

-c conffile, --conf conffile

Specify an alternate configuration file conffile. On Windows, this option must be used with -f . To change the
configuration file used by the NXLog service on Windows, modify the service parameters.

-f , --foreground

Run in foreground, do not daemonize.

-h , --help

Print help.

-r , --reload

Reload configuration of a running instance.

-s, --stop

Send stop signal to a running instance.

-v, --verify

Verify configuration file syntax.

SIGNALS

Various signals can be used to control the NXLog process. Some corresponding Windows control codes are also
available; these are shown in parentheses where applicable.

SIGHUP

This signal causes NXLog to reload the configuration and restart the modules. On Windows, "sc stop nxlog"

Chapter 1. Man Pages NXLog Community Edition Reference Manual

© NXLog Ltd. 2018 1

and "sc start nxlog" can be used instead.

SIGUSR1 (200)

This signal generates an internal log message with information about the current state of NXLog and its
configured module instances. The message will be generated with INFO log level, written to the log file (if
configured with LogFile), and available via the im_internal module.

SIGUSR2 (201)

This signal causes NXLog to switch to the DEBUG log level. This is equivalent to setting the LogLevel directive
to DEBUG but does not require NXLog to be restarted.

SIGINT/SIGQUIT/SIGTERM

NXLog will exit if it receives one of these signals. On Windows, "sc stop nxlog" can be used instead.

On Linux/UNIX, a signal can be sent with the kill command. The following, for example, sends the SIGUSR1
signal:

kill -SIGUSR1 $(cat /var/run/nxlog/nxlog.pid)

On Windows, a signal can be sent with the sc command. The following, for example, sends the 200 signal:

sc control nxlog 200

FILES

/bin/nxlog

The main NXLog executable

/bin/nxlog-stmnt-verifier

This tool can be used to check NXLog Language statements. All statements are read from standard input and
then validated. If a statement is invalid, the tool prints an error to standard error and exits non-zero.

/etc/nxlog.conf

The default configuration file

/usr/libexec/nxlog/modules/

The NXLog modules are located in this directory, by default. See the ModuleDir directive.

/var/spool/nxlog/configcache.dat

This is the position cache file where positions are saved. See the NoCache directive, in addition to CacheDir.

/var/run/nxlog/nxlog.pid

The process ID (PID) of the currently running NXLog process is written to this file. See the PidFile directive.

SEE ALSO

nxlog-processor(8)

NXLog website: https://nxlog.co

NXLog User Guide: https://nxlog.co/documentation/nxlog-user-guide

COPYRIGHT

Copyright © NXLog Ltd. 2018

NXLog Community Edition Reference Manual Chapter 1. Man Pages

2 © NXLog Ltd. 2018

https://nxlog.co
https://nxlog.co/documentation/nxlog-user-guide

The NXLog Community Edition is licensed under the NXLog Public License. The NXLog Enterprise Edition is not
free and has a commercial license.

1.2. nxlog-processor(8)

NAME

nxlog-processor - performs batch log processing

SYNOPSIS

nxlog-processor [-c conffile] [-v]

DESCRIPTION

The nxlog-processor tool is similar to the NXLog daemon and uses the same configuration file. However, it runs
in the foreground and exits after all input log data has been processed. Common input sources are files and
databases. This tool is useful for log processing tasks such as:

¥ loading a group of files into a database,

¥ converting between different formats,

¥ testing configuration, or

¥ doing offline event correlation.

While the details provided here apply to NXLog installations on Linux and other UNIX-style operating systems in
particular, a few Windows-specific notes are included.

OPTIONS

-c conffile, --conf conffile

Specify an alternate configuration file conffile.

-h , --help

Print help.

-v, --verify

Verify configuration file syntax.

FILES

/bin/nxlog-processor

The main NXLog-processor executable

/bin/nxlog-stmnt-verifier

This tool can be used to check NXLog Language statements. All statements are read from standard input and
then validated. If a statement is invalid, the tool prints an error to standard error and exits non-zero.

/etc/nxlog.conf

The default configuration file

/var/spool/nxlog/configcache.dat

This is the position cache file where positions are saved. To disable position caching, as may be desirable
when using nxlog-processor, set the NoCache directive to TRUE.

Chapter 1. Man Pages NXLog Community Edition Reference Manual

© NXLog Ltd. 2018 3

SEE ALSO

nxlog(8)

NXLog website: https://nxlog.co

NXLog User Guide: https://nxlog.co/documentation/nxlog-user-guide

COPYRIGHT

Copyright © NXLog Ltd. 2018

The NXLog Community Edition is licensed under the NXLog Public License. The NXLog Enterprise Edition is not
free and has a commercial license.

NXLog Community Edition Reference Manual Chapter 1. Man Pages

4 © NXLog Ltd. 2018

https://nxlog.co
https://nxlog.co/documentation/nxlog-user-guide

Chapter 2. Configuration
An NXLog configuration consists of global directives, module instances, and routes. The following sections list the
core NXLog directives provided. Additional directives are provided at the module level. A valid configuration must
contain at least one input module instance and at least one output module instance.

A module instance name may contain letters, digits, periods (.), and underscores (_). The first character in a
module instance name must be a letter or an underscore. The corresponding regular expression is [a-zA-
Z_][a-zA-Z0-9._]* .

A route instance name may contain letters, digits, periods (.), and underscores (_). The first character in a route
instance name must be a letter, a digit, or an underscore. The corresponding regular expression is [a-zA-Z0-
9_][a-zA-Z0-9._]* .

2.1. General Directives
The following directives can be used throughout the configuration file. These directives are handled by the
configuration parser, and substitutions occur before the configuration check.

define

Use this directive to configure a constant or macro to be used later. Refer to a define by surrounding the
name with percent signs (%). Enclose a group of statements with curly braces ({}).

Example 1. Using the define Directive

This configuration shows three example defines: BASEDIR is a constant, IMPORTANT is a statement, and
WARN_DROP is a group of statements.

nxlog.conf

define BASEDIR /var/log
define IMPORTANT if $raw_event =~ /important/ \
Ê $Message = 'IMPORTANT ' + $raw_event;
define WARN_DROP { log_warning("dropping message"); drop(); }

<Input messages >
Ê Module im_file
Ê File '%BASEDIR%/messages'
</Input>

<Input proftpd >
Ê Module im_file
Ê File '%BASEDIR%/proftpd.log'
Ê <Exec>
Ê %IMPORTANT%
Ê if $raw_event =~ /dropme/ %WARN_DROP%
Ê </Exec>
</Input>

include

This directive allows a specified file to be included in the current configuration file. Wildcarded filenames are
supported.

NOTE
The SpoolDir directive only takes effect after the configuration is parsed, so relative paths
specified with the include directive must be relative to the working directory NXLog was
started from.

Chapter 2. Configuration NXLog Community Edition Reference Manual

© NXLog Ltd. 2018 5

Example 2. Using the include Directive

This example includes a file relative to the directory NXLog is started from:

nxlog.conf

include modules/module1.conf

This example includes all matching files and uses an absolute path:

nxlog.conf

include /etc/nxlog.d/*.conf

2.2. Global Directives
CacheDir

This directive specifies a directory where the cache file (configcache.dat) should be written. This directive
has a compiled-in value which is used by default.

FlowControl

This optional boolean directive specifies whether all input and processor modules should use flow control.
This defaults to TRUE. See the description of the module level FlowControl directive for more information.

Group

Similar to User, NXLog will set the group ID to run under. The group can be specified by name or numeric ID.
This directive has no effect when running on the Windows platform or with nxlog-processor(8) .

IgnoreErrors

If set to FALSE, NXLog will stop when it encounters a problem with the configuration file (such as an invalid
module directive) or if there is any other problem which would prevent all modules functioning correctly. If
set to TRUE, NXLog will start after logging the problem. The default value is TRUE.

LogFile

NXLog will write its internal log to this file. If this directive is not specified, self logging is disabled. Note that
the im_internal module can also be used to direct internal log messages to files or different output
destinations, but this does not support log level below INFO. This LogFile directive is especially useful for
debugging.

LogLevel

This directive has five possible values: CRITICAL , ERROR, WARNING, INFO, and DEBUG. It will set both the logging
level used for LogFile and the standard output if NXLog is started in the foreground. The default LogLevel is
INFO.

ModuleDir

By default the NXLog binaries have a compiled-in value for the directory to search for loadable modules. This
can be overridden with this directive. The module directory contains sub-directories for each module type
(extension, input, output, and processor), and the module binaries are located in those.

NoCache

Some modules save data to a cache file which is persisted across a shutdown/restart. Modules such as im_file
will save the file position in order to continue reading from the same position after a restart as before. This
caching mechanism can be explicitly turned off with this directive. This is mostly useful with nxlog-
processor(8) in offline mode. If this boolean directive is not specified, it defaults to FALSE (caching is enabled).
Note that many input modules, such as im_file, provide a SavePos directive that can be used to disable the
position cache for a specific module instance. SavePos has no effect if the cache is disabled globally with
NoCache TRUE.

NXLog Community Edition Reference Manual Chapter 2. Configuration

6 © NXLog Ltd. 2018

NoFreeOnExit

This directive is for debugging. When set to TRUE, NXLog will not free module resources on exit, allowing
valgrind to show proper stack trace locations in module function calls. The default value is FALSE.

Panic

A panic condition is a critical state which usually indicates a bug. Assertions are used in NXLog code for
checking conditions where the code will not work unless the asserted condition is satisfied, and for security.
Failing assertions result in a panic and suggest a bug in the code. A typical case is checking for NULL pointers
before pointer dereference. This directive can take three different values: HARD, SOFT, or OFF. HARD will cause
an abort in case the assertion fails. This is how most C based programs work. SOFT will cause an exception to
be thrown at the place of the panic/assertion. In case of NULL pointer checks this is identical to a
NullPointerException in Java. It is possible that NXLog can recover from exceptions and can continue to
process log messages, or at least the other modules can. In case of assertion failure the location and the
condition is printed at CRITICAL log level in HARD mode and ERROR log level in SOFT mode. If Panic is set to
OFF, the failing condition is printed in the logs but the execution will continue on the normal code path. Most
of the time this will result in a segmentation fault or other undefined behavior, though in some cases turning
off a buggy assertion or panic will solve the problems caused by it in HARD/SOFT mode. The default value for
Panic is SOFT.

PidFile

Under Unix operating systems, NXLog writes a PID file as other system daemons do. The default PID file can
be overridden with this directive in case multiple daemon instances need to be running. This directive has no
effect when running on the Windows platform or with nxlog-processor(8) .

RootDir

NXLog will set its root directory to the value specified with this directive. If SpoolDir is also set, this will be
relative to the value of RootDir (chroot() is called first). This directive has no effect when running on the
Windows platform or with the nxlog-processor(8) .

SpoolDir

NXLog will change its working directory to the value specified with this directive. This is useful with files
created through relative filenames (for example, with om_file) and in case of core dumps. This directive has
no effect with the nxlog-processor(8) .

SuppressRepeatingLogs

Under some circumstances it is possible for NXLog to generate an extreme amount of internal logs consisting
of the same message due to an incorrect configuration or a software bug. In this case, the LogFile can quickly
consume the available disk space. With this directive, NXLog will write at most 2 lines per second if the same
message is generated successively, by logging "last message repeated n times" messages. If this boolean
directive is not specified, it defaults to TRUE (suppression of repeating messages is enabled).

Threads

This directive specifies the number of worker threads to use. The number of the worker threads is calculated
and set to an optimal value if this directive is not defined. Do not set this unless you know what you are
doing.

User

NXLog will drop to the user specified with this directive. This is useful if NXLog needs privileged access to
some system resources (such as kernel messages or to bind a port below 1024). On Linux systems NXLog will
use capabilities to access these resources. In this case NXLog must be started as root. The user can be
specified by name or numeric ID. This directive has no effect when running on the Windows platform or with
nxlog-processor(8) .

2.3. Common Module Directives
The following directives are common to all modules. The Module directive is mandatory.

Chapter 2. Configuration NXLog Community Edition Reference Manual

© NXLog Ltd. 2018 7

Module

This mandatory directive specifies which binary should be loaded. The module binary has a .so extension on
Unix and a .dll on Windows platforms and resides under the ModuleDir location. Each module binary name
is prefixed with im_ , pm_, om_, or xm_ (for input , processor, output , and extension, respectively). It is possible for
multiple instances to use the same loadable binary. In this case the binary is only loaded once but
instantiated multiple times. Different module instances may have different configurations.

FlowControl

This optional boolean directive specifies whether the module instance should use flow control. FlowControl
is only valid for Input and Processor modules. By default, FlowControl is TRUE (enabled). This module-level
directive can be used to override the global FlowControl directive.

When flow control is in effect, a module (Input or Processor) which tries to forward log data to the next
module in the route will be suspended if the next module cannot accept more data. For example, if a network
module (such as om_tcp) cannot forward logs because of a network error, the preceding module in the route
will be paused. When flow control is disabled, the module will drop the log record if the queue of the next
module in the route is full.

Disabling flow control can be useful when multiple output modules are configured to store or forward log
data. When flow control is enabled, the output modules will only process log data if all outputs are functional.
Consider the case where log data is stored in a file using om_file and also forwarded over the network using
om_tcp . When flow control is enabled, a network disconnection will make the data flow stall and log data will
not be written into the local file either. With flow control disabled, NXLog will write log data to the file and will
drop messages that cannot be forwarded over the network.

WARNING

Suspending an im_udp instance is ineffective, because UDP provides no receipt
acknowledgement. Suspending an im_uds instance when collecting local Syslog
messages from the /dev/log Unix domain socket will cause the syslog() system call to
block in any programs trying to write to the system log. It is generally recommended to
disable flow control in these cases.

InputType

This directive specifies the name of the registered input reader function to be used for parsing raw events
from input data. Names are treated case insensitively. This directive is only available for stream oriented
input modules: im_file , im_exec, im_ssl, im_tcp , im_udp , and im_uds. These modules work by filling an input
buffer with data read from the source. If the read operation was successful (there was data coming from the
source), the module calls the specified callback function. If this is not explicitly specified, the module default
will be used. Note that im_udp may only work properly if log messages do not span multiple packets and are
within the UDP message size limit. Otherwise the loss of a packet may lead to parsing errors.

Modules may provide custom input reader functions. Once these are registered into the NXLog core, the
modules listed above will be capable of using these. This makes it easier to implement custom protocols
because these can be developed without concern for the transport layer.

The following input reader functions are provided by the NXLog core:

Binary

The input is parsed in the NXLog binary format, which preserves the parsed fields of the event records.
The LineBased reader will automatically detect event records in the binary NXLog format, so it is only
recommended to configure InputType to Binary if compatibility with other logging software is not
required.

Dgram

Once the buffer is filled with data, it is considered to be one event record. This is the default for the
im_udp input module, since UDP Syslog messages arrive in separate packets.

NXLog Community Edition Reference Manual Chapter 2. Configuration

8 © NXLog Ltd. 2018

LineBased

The input is assumed to contain event records separated by newlines. It can handle both CRLF (Windows)
and LF (Unix) line-breaks. Thus if an LF (\n) or CRLF (\r\n) is found, the function assumes that it has
reached the end of the event record.

Example 3. TCP Input Assuming NXLog Format

This configuration explicitly specifies the Binary InputType.

nxlog.conf

<Input tcp >
Ê Module im_tcp
Ê Port 2345
Ê InputType Binary
</Input>

OutputType

This directive specifies the name of the registered output writer function to be used for formatting raw events
when storing or forwarding output. Names are treated case insensitively. This directive is only available for
stream oriented output modules: om_file , om_exec, om_ssl, om_tcp , om_udp , and om_uds . These modules
work by filling the output buffer with data to be written to the destination. The specified callback function is
called before the write operation. If this is not explicitly specified, the module default will be used.

Modules may provide custom output formatter functions. Once these are registered into the NXLog core, the
modules listed above will be capable of using these. This makes it easier to implement custom protocols
because these can be developed without concern for the transport layer.

The following output writer functions are provided by the NXLog core:

Binary

The output is written in the NXLog binary format which preserves parsed fields of the event records.

Dgram

Once the buffer is filled with data, it is considered to be one event record. This is the default for the
om_udp output module, since UDP Syslog messages are sent in separate packets.

LineBased

The output will contain event records separated by newlines. The record terminator is CRLF (\r\n).

Example 4. TCP Output Sending Messages in NXLog Format

This configuration explicitly specifies the Binary OutputType.

nxlog.conf

<Output tcp >
Ê Module om_tcp
Ê Port 2345
Ê Host localhost
Ê OutputType Binary
</Output>

2.3.1. Exec

The Exec directive/block contains statements in the NXLog language which are executed when a module receives
a log message. This directive is available in all input , processor , and output modules. It is not available in most

Chapter 2. Configuration NXLog Community Edition Reference Manual

© NXLog Ltd. 2018 9

extension modules because these do not handle log messages directly (the xm_multiline and xm_rewrite
modules do provide Exec directives).

Example 5. Simple Exec Statement

This statement assigns a value to the $Hostname field in the event record.

nxlog.conf

Exec $Hostname = 'myhost';

Each directive must be on one line unless it contains a trailing backslash (\) character.

Example 6. Exec Statement Spanning Multiple Lines

This if statement uses line continuation to span multiple lines.

nxlog.conf

Exec if $Message =~ /something interesting/ \
Ê log_info("found something interesting"); \
Ê else \
Ê log_debug("found nothing interesting");

More than one Exec directive or block may be specified. They are executed in the order of appearance. Each
Exec directive must contain a full statement. Therefore it is not possible to split the lines in the previous example
into multiple Exec directives. It is only possible to split the Exec directive if it contains multiple statements.

Example 7. Equivalent Use of Statements in Exec

This example shows two equivalent uses of the Exec directive.

nxlog.conf

Exec log_info("first"); \
Ê log_info("second");

This produces identical behavior:

nxlog.conf

Exec log_info("first");
Exec log_info("second");

The Exec directive can also be used as a block. To use multiple statements spanning more than one line, it is
recommended to use the <Exec> block instead. When using a block, it is not necessary to use the backslash (\)
character for line continuation.

NXLog Community Edition Reference Manual Chapter 2. Configuration

10 © NXLog Ltd. 2018

Example 8. Using the Exec Block

This example shows two equivalent uses of Exec, first as a directive, then as a block.

nxlog.conf

Exec log_info("first"); \
Ê log_info("second");

The following Exec block is equivalent. Notice the backslash (\) is omitted.

nxlog.conf

<Exec>
Ê log_info("first");
Ê log_info("second");
</Exec>

2.3.2. Schedule

The Schedule block can be used to execute periodic jobs, such as log rotation or any other task. Scheduled jobs
have the same priority as the module. The Schedule block has the following directives:

Every

In addition to the crontab format it is possible to schedule execution at periodic intervals. With the crontab
format it is not possible to run a job every five days for example, but this directive enables it in a simple way.
It takes an integer value with an optional unit. The unit can be one of the following: sec , min , hour , day , or
week. If the unit is not specified, the value is assumed to be in seconds.

Exec

The mandatory Exec directive takes one or more NXLog statements . This is the code which is actually being
scheduled. Multiple Exec directives can be specified within one Schedule block. See the module-level Exec
directive, this behaves the same. Note that it is not possible to use fields in statements here because
execution is not triggered by log messages.

First

This directive sets the first execution time. If the value is in the past, the next execution time is calculated as if
NXLog has been running since and jobs will not be run to make up for missed events in the past. The directive
takes a datetime literal value.

When

This directive takes a value similar to a crontab entry: five space-separated definitions for minute, hour, day,
month, and weekday. See the crontab(5) manual for the field definitions. It supports lists as comma
separated values and/or ranges. Step values are also supported with the slash. Month and week days are not
supported, these must be defined with numeric values. The following extensions are also supported:

@yearly Run once a year, "0 0 1 1 *".
@annually (same as @yearly)
@monthly Run once a month, "0 0 1 * *".
@weekly Run once a week, "0 0 * * 0".
@daily Run once a day, "0 0 * * *".
@midnight (same as @daily)
@hourly Run once an hour, "0 * * * *".

Chapter 2. Configuration NXLog Community Edition Reference Manual

© NXLog Ltd. 2018 11

Example 9. Scheduled Exec Statements

This example shows two scheduled Exec statements in a im_tcp module instance. The first is executed
every second, while the second uses a crontab(5) style value.

nxlog.conf

<Input in >
Ê Module im_tcp
Ê Port 2345

Ê <Schedule>
Ê Every 1 sec
Ê First 2010-12-17 00:19:06
Ê Exec log_info("scheduled execution at " + now());
Ê </Schedule>

Ê <Schedule>
Ê When 1 */2 2-4 * *
Ê Exec log_info("scheduled execution at " + now());
Ê </Schedule>
</Input>

2.4. Route Directives
The following directives can be used in Route blocks. The Path directive is mandatory.

Path

The data flow is defined by the Path directive. First the instance names of Input modules are specified. If
more than one Input reads log messages which feed data into the route, then these must be separated by
commas. The list of Input modules is followed by an arrow (=>). Either processor modules or output modules
follow. Processor modules must be separated by arrows, not commas, because they operate in series, unlike
Input and Output modules which work in parallel. Output modules are separated by commas. The Path must
specify at least an Input and an Output. The syntax is illustrated by the following:

Path INPUT1[, INPUT2...] => [PROCESSOR1 [=> PROCESSOR2...] =>] OUTPUT1[, OUTPUT2...]

NXLog Community Edition Reference Manual Chapter 2. Configuration

12 © NXLog Ltd. 2018

Example 10. Specifying Routes

The following configuration shows modules being used in three different routes.

nxlog.conf

<Input in1 >
Ê Module im_null
</Input>

<Input in2 >
Ê Module im_null
</Input>

<Processor p1>
Ê Module pm_null
</Processor>

<Processor p2>
Ê Module pm_null
</Processor>

<Output out1 >
Ê Module om_null
</Output>

<Output out2 >
Ê Module om_null
</Output>

<Route 1>
Ê # Basic route
Ê Path in1 = > out1
</Route>

<Route 2>
Ê # Basic route with one processor module
Ê Path in1 = > p1 = > out1
</Route>

<Route 3>
Ê # Complex route with multiple input/output/processor modules
Ê Path in1, in2 = > p1 = > p2 = > out1, out2
</Route>

Priority

This directive takes an integer value in the range of 1-100 as a parameter, and the default is 10. Log messages
in routes with a lower Priority value will be processed before others. Internally, this value is assigned to each
module part of the route. The events of the modules are processed in priority order by the NXLog engine.
Modules of a route with a lower Priority value (higher priority) will process log messages first.

Chapter 2. Configuration NXLog Community Edition Reference Manual

© NXLog Ltd. 2018 13

Example 11. Prioritized Processing

This configuration prioritizes the UDP route over the TCP route in order to minimize loss of UDP Syslog
messages when the system is busy.

nxlog.conf

<Input tcpin >
Ê Module im_tcp
Ê Host localhost
Ê Port 514
</Input>

<Input udpin >
Ê Module im_udp
Ê Host localhost
Ê Port 514
</Input>

<Output tcpfile >
Ê Module om_file
Ê File "/var/log/tcp.log"
</Output>

<Output udpfile >
Ê Module om_file
Ê File "/var/log/udp.log"
</Output>

<Route udp>
Ê Priority 1
Ê Path udpin = > udpfile
</Route>

<Route tcp >
Ê Priority 2
Ê Path tcpin = > tcpfile
</Route>

NXLog Community Edition Reference Manual Chapter 2. Configuration

14 © NXLog Ltd. 2018

Chapter 3. Language

3.1. Types
The following types are provided by the NXLog language.

Unknown

This is a special type for values where the type cannot be determined at compile time and for uninitialized
values. The undef literal and fields without a value also have an unknown type. The unknown type can also be
thought of as "any" in case of function and procedure API declarations.

Boolean

A boolean value is TRUE, FALSE or undefined. Note that an undefined value is not the same as a FALSE value.

Integer

An integer can hold a signed 64 bit value in addition to the undefined value. Floating point values are not
supported.

String

A string is an array of characters in any character set. The binary type should be used for values where the
NUL byte can also occur. An undefined string is not the same as an empty string. Strings have a limited length
to prevent resource exhaustion problems, this is a compile-time value currently set to 1M.

Datetime

A datetime holds a microsecond value of time elapsed since the Epoch. It is always stored in UTC/GMT.

IPv4 Address

An ip4addr type stores a dotted-quad IPv4 address in an internal format (integer).

IPv6 Address

An ip6addr type stores an IPv6 address in an internal format.

Regular expression

A regular expression type can only be used with the =~ or !~ operators.

Binary

This type can hold an array of bytes.

Variadic arguments

This is a special type only used in function and procedure API declarations to indicate variadic arguments.

3.2. Expressions

3.2.1. Literals

Undef

The undef literal has an unknown type. It can be also used in an assignment to unset the value of a field .

Example 12. Un-Setting the Value of a Field

This statement unsets the $ProcessID field.

$ProcessID = undef;

Chapter 3. Language NXLog Community Edition Reference Manual

© NXLog Ltd. 2018 15

Boolean

A boolean literal is either TRUE or FALSE. It is case-insensitive, so True , False , true , and false are also valid.

Integer

An integer starts with a minus (-) sign if it is negative. A "0X" or "0x" prepended modifier indicates a
hexadecimal notation. The "K", "M" and "G" modifiers are also supported; these mean Kilo (1024), Mega
(1024^2), or Giga (1024^3) respectively when appended.

Example 13. Setting an Integer Value

This statement uses a modifier to set the $Limit field to 44040192 (42!1024^2).

$Limit = 42M;

String

String literals are quoted characters using either single or double quotes. String literals specified with double
quotes can contain the following escape sequences.

\\

The backslash (\) character.

\"

The double quote (") character.

\n

Line feed (LF).

\r

Carriage return (CR).

\t

Horizontal tab.

\b

Audible bell.

\xXX

A single byte in the form of a two digit hexadecimal number. For example the line-feed character can also
be expressed as \x0A .

NOTE
String literals in single quotes do not process the escape sequences: "\n" is a single
character (LF) while '\n' is two characters. The following comparison is FALSE for this
reason: "\n" == '\n' .

NOTE
Extra care should be taken with the backslash when using double quoted string literals to
specify file paths on Windows. For more information about the possible complications,
see this note for the im_file File directive.

NXLog Community Edition Reference Manual Chapter 3. Language

16 © NXLog Ltd. 2018

Example 14. Setting a String Value

This statement sets the $Message field to the specified string.

$Message = "Test message";

Regular expression

Regular expressions must be quoted with slashes as in Perl. Captured substrings are accessible through a
numeric reference such as $1. The full subject string is placed into $0.

Example 15. A regular expression match operation

if $Message =~ /^Test (\S+)/ log_info("captured: " + $1);

Datetime

A datetime literal is an unquoted representation of a time value expressing local time in the format of YYYY-
MM-DD hh:mm:ss .

Example 16. Setting a Datetime Value

This statement sets the $EventTime field to the specified datetime value.

$EventTime = 2000-01-02 03:04:05;

IPv4 Address

An IPv4 literal value is expressed in dotted quad notation such as 192.168.1.1 .

IPv6 Address

An IPv6 literal value is expressed by 8 groups of 16-bit hexadecimal values separated by colons (:) such as
2001:0db8:85a3:0000:0000:8a2e:0370:7334 .

3.2.2. Fields

Fields are referenced in the NXLog language by prepending a dollar sign ($) to the field name.

Normally, a field name may contain letters, digits, the period (.), and the underscore (_). Additionally, field names
must begin with a letter or an underscore. The corresponding regular expression is:

[a-zA-Z_][a-zA-Z0-9._]*

However, those restrictions are relaxed if the field name is specified with curly braces ({}). In this case, the field
name may also contain hyphens (-), parentheses (()), and spaces. The field name may also begin with any one
of the allowed characters. The regular expression in this case is:

[a-zA-Z0-9._() -]+

Chapter 3. Language NXLog Community Edition Reference Manual

© NXLog Ltd. 2018 17

Example 17. Referencing a Field

This statement generates an internal log message indicating the time when the message was received by
NXLog.

log_debug('Message received at ' + $EventReceivedTime);

This statement uses curly braces ({}) to refer to a field with a hyphenated name.

log_info('The file size is ' + ${file-size});

A field which does not exist has an unknown type.

3.2.3. Operations

3.2.3.1. Unary Operations

The following unary operations are available. It is possible to use brackets around the operand to make it look
like a function call as in the "defined" example below.

not

The not operator expects a boolean value. It will evaluate to undef if the value is undefined. If it receives an
unknown value which evaluates to a non-boolean, it will result in a run-time execution error.

Example 18. Using the "not" Operand

If the $Success field has a value of false, an error is logged.

if not $Success log_error("Job failed");

defined

The defined operator will evaluate to TRUE if the operand is defined, otherwise FALSE.

Example 19. Using the Unary "defined" Operation

This statement is a no-op, it does nothing.

if defined undef log_info("never printed");

If the $EventTime field has not been set (due perhaps to failed parsing), it will be set to the current time.

if not defined($EventTime) $EventTime = now();

3.2.3.2. Binary Operations

The following binary operations are available.

The operations are described with the following syntax:

LEFT_OPERAND_TYPE OPERATION RIGHT_OPERAND_TYPE = EVALUATED_VALUE_TYPE

=~

This is the regular expression match operation as in Perl. The PCRE engine is used to to execute the regular
expressions. This operation takes a string and a regexp operand and evaluates to a boolean value which will

NXLog Community Edition Reference Manual Chapter 3. Language

18 © NXLog Ltd. 2018

be TRUE if the regular expression matches the subject string. Captured sub-strings are accessible through
numeric reference, such as $1, and the full subject string is placed into $0.

¥ string =~ regexp = boolean

¥ regexp =~ string = boolean

Example 20. Regular Expression Based String Matching

A log message will be generated if the $Message field matches the regular expression.

if $Message =~ /^Test message/ log_info("matched");

Regular expression based string substitution is also supported with the s/// operator.

The following regular expression modifiers are supported:

g

The /g modifier can be used for global replacement.

Example 21. Replace Whitespace Occurrences

if $SourceName =~ s/\s/_/g log_info("removed all whitespace in SourceName");

s

The dot (.) normally matches any character except newline. The /s modifier causes the dot to match all
characters including line terminator characters (LF and CRLF).

Example 22. Dot Matches All Characters

if $Message =~ /^Backtrace.*END$/s drop();

m

The /m modifier can be used to treat the string as multiple lines (^ and $ match newlines within data).

i

The /i modifier does case insensitive matching.

Variables and captured sub-string references cannot be used inside the regular expression or the regexp
substitution operator (they will be treated literally).

!~

This is the opposite of =~: the expression will evaluate to TRUE if the regular expression does not match on
the subject string. It can be also written as not LEFT_OPERAND =~ RIGHT_OPERAND.

¥ string !~ regexp = boolean

¥ regexp !~ string = boolean

The s/// substitution operator is also supported.

Chapter 3. Language NXLog Community Edition Reference Manual

© NXLog Ltd. 2018 19

Example 23. Regular Expression Based Negative String Matching

A log message will be generated if the $Message field does not match the regular expression.

if $Message !~ /^Test message/ log_info("didn't match");

==

This operator compares two values for equality. Comparing a defined value with an undefined results in
undef .

¥ undef == undef = TRUE

¥ string == string = boolean

¥ integer == integer = boolean

¥ boolean == boolean = boolean

¥ datetime == datetime = boolean

¥ ip4addr == ip4addr = boolean

¥ ip4addr == string = boolean

¥ string == ip4addr = boolean

Example 24. Equality

A log message will be generated if $SeverityValue is 1.

if $SeverityValue == 1 log_info("severity is one");

!=

This operator compares two values for inequality. Comparing a defined value with an undefined results in
undef .

¥ undef != undef = FALSE

¥ string != string = boolean

¥ integer != integer = boolean

¥ boolean != boolean = boolean

¥ datetime != datetime = boolean

¥ ip4addr != ip4addr = boolean

¥ ip4addr != string = boolean

¥ string != ip4addr = boolean

Example 25. Inequality

A log message will be generated if $SeverityValue is not 1.

if $SeverityValue != 1 log_info("severity is not one");

<

This operation will evaluate to TRUE if the left operand is less than the right operand, and FALSE otherwise.

NXLog Community Edition Reference Manual Chapter 3. Language

20 © NXLog Ltd. 2018

Comparing a defined value with an undefined results in undef .

¥ integer < integer = boolean

¥ datetime < datetime = boolean

Example 26. Less

A log message will be generated if $SeverityValue is less than 1.

if $SeverityValue < 1 log_info("severity is less than one");

<=

This operation will evaluate to TRUE if the left operand is less than or equal to the right operand, and FALSE
otherwise. Comparing a defined value with an undefined results in undef .

¥ integer <= integer = boolean

¥ datetime <= datetime = boolean

Example 27. Less or Equal

A log message will be generated if $SeverityValue is less than or equal to 1.

if $SeverityValue < 1 log_info("severity is less than or equal to one");

>

This operation will evaluate to TRUE if the left operand is greater than the right operand, and FALSE
otherwise. Comparing a defined value with an undefined results in undef .

¥ integer > integer = boolean

¥ datetime > datetime = boolean

Example 28. Greater

A log message will be generated if $SeverityValue is greater than 1.

if $SeverityValue > 1 log_info("severity is greater than one");

>=

This operation will evaluate to TRUE if the left operand is greater than or equal to the right operand, and
FALSE otherwise. Comparing a defined value with an undefined results in undef .

¥ integer >= integer = boolean

¥ datetime >= datetime = boolean

Example 29. Greater or Equal

A log message will be generated if $SeverityValue is greater than or equal to 1.

if $SeverityValue >= 1 log_info("severity is greater than or equal to one");

Chapter 3. Language NXLog Community Edition Reference Manual

© NXLog Ltd. 2018 21

and

This operation evaluates to TRUE if and only if both operands are TRUE. The operation will evaluate to undef
if either operand is undefined.

boolean and boolean = boolean

Example 30. And Operation

A log message will be generated only if both $SeverityValue equals 1 and $FacilityValue equals 2.

if $SeverityValue == 1 and $FacilityValue == 2 log_info("1 and 2");

or

This operation evaluates to TRUE if either operand is TRUE. The operation will evaluate to undef if both
operands are undefined.

boolean or boolean = boolean

Example 31. Or Operation

A log message will be generated if $SeverityValue is equal to either 1 or 2.

if $SeverityValue == 1 or $SeverityValue == 2 log_info("1 or 2");

+

This operation will result in an integer if both operands are integers. If either operand is a string, the result
will be a string where non-string typed values are converted to strings. In this case it acts as a concatenation
operator, like the dot (.) operator in Perl. Adding an undefined value to a non-string will result in undef.

¥ integer + integer = integer

¥ string + undef = string

¥ undef + string = string

¥ undef + undef = undef

¥ string + string = string (Concatenate two strings.)

¥ datetime + integer = datetime (Add the number of seconds in the right value to the datetime stored
in the left value.)

¥ integer + datetime = datetime (Add the number of seconds in the left value to the datetime stored
in the right value.)

Example 32. Concatenation

This statement will always cause a log message to be generated.

if 1 + "a" == "1a" log_info("this will be printed");

-

Subtraction. The result will be undef if either operand is undefined.

¥ integer - integer = integer (Subtract two integers.)

¥ datetime - datetime = integer (Subtract two datetime types. The result is the difference between to

NXLog Community Edition Reference Manual Chapter 3. Language

22 © NXLog Ltd. 2018

two expressed in microseconds.)

¥ datetime - integer = datetime (Subtract the number of seconds from the datetime stored in the left
value.)

Example 33. Subtraction

This statement will always cause a log message to be generated.

if 4 - 1 == 3 log_info("four minus one is three");

*

Multiply an integer with another. The result will be undef if either operand is undefined.

integer * integer = integer

Example 34. Multiplication

This statement will always cause a log message to be generated.

if 4 * 2 == 8 log_info("four times two is eight");

/

Divide an integer with another. The result will be undef if either operand is undefined. Since the result is an
integer, a fractional part is lost.

integer / integer = integer

Example 35. Division

This statement will always cause a log message to be generated.

if 9 / 4 == 2 log_info("9 divided by 4 is 2");

%

The modulo operation divides an integer with another and returns the remainder. The result will be undef if
either operand is undefined.

integer % integer = integer

Example 36. Modulo

This statement will always cause a log message to be generated.

if 3 % 2 == 1 log_info("three mod two is one");

IN

This operation will evaluate to TRUE if the left operand is equal to any of the expressions in the list on the
right, and FALSE otherwise. Comparing a undefined value results in undef .

unknown IN unknown , unknown É = boolean

Chapter 3. Language NXLog Community Edition Reference Manual

© NXLog Ltd. 2018 23

Example 37. IN

A log message will be generated if $EventID is equal to any one of the values in the list.

if $EventID IN (1000, 1001, 1004, 4001) log_info("EventID found");

NOT IN

This operation is equivalent to NOT expr IN expr_list .

unknown NOT IN unknown , unknown É = boolean

Example 38. NOT IN

A log message will be generated if $EventID is not equal to any of the values in the list.

if $EventID NOT IN (1000, 1001, 1004, 4001) log_info("EventID not in list");

3.2.4. Functions

See Functions for a list of functions provided by the NXLog core. Additional functions are available through
modules.

Example 39. A Function Call

This statement uses the now() function to set the field to the current time.

$EventTime = now();

It is also possible to call a function of a specific module instance.

Example 40. Calling a Function of a Specific Module Instance

This statement calls the file_name() and file_size() functions of a defined om_file instance named out in
order to log the name and size of its currently open output file.

log_info('Size of output file ' + out->file_name() + ' is ' + out->file_size());

3.3. Statements
The following elements can be used in statements. There is no loop operation (for or while) in the NXLog
language.

3.3.1. Assignment

The assignment operation is declared with an equal sign (=). It loads the value from the expression evaluated on
the right into a field on the left.

NXLog Community Edition Reference Manual Chapter 3. Language

24 © NXLog Ltd. 2018

Example 41. Field Assignment

This statement sets the $EventReceivedTime field to the value returned by the now() function.

$EventReceivedTime = now();

3.3.2. Block

A block consists of one or more statements within curly braces ({}). This is typically used with conditional
statements as in the example below.

Example 42. Conditional Statement Block

If the expression matches, both log messages will be generated.

if now() > 2000-01-01 00:00:00
{
Ê log_info("we are in the");
Ê log_info("21st century");
}

3.3.3. Procedures

See Procedures for a list of procedures provided by the NXLog core. Additional procedures are available through
modules.

Example 43. A Procedure Call

The log_info() procedure generates an internal log message.

log_info("No log source activity detected.");

It is also possible to call a procedure of a specific module instance.

Example 44. Calling a Procedure of a Specific Module Instance

This statement calls the parse_csv() procedure of a defined xm_csv module instance named csv_parser .

csv_parser->parse_csv();

3.3.4. If-Else

A conditional statement starts with the if keyword followed by a boolean expression and a statement. The else
keyword, followed by another statement, is optional. Brackets around the expression are also optional.

Chapter 3. Language NXLog Community Edition Reference Manual

© NXLog Ltd. 2018 25

Example 45. Conditional Statements

A log message will be generated if the expression matches.

if now() > 2000-01-01 00:00:00 log_info("we are in the 21st century");

This statement is the same as the previous, but uses brackets.

if (now() > 2000-01-01 00:00:00) log_info("we are in the 21st century");

This is a conditional statement block.

if now() > 2000-01-01 00:00:00
{
Ê log_info("we are in the 21st century");
}

This conditional statement block includes an else branch.

if now() > 2000-01-01 00:00:00
{
Ê log_info("we are in the 21st century");
}
else log_info("we are not yet in the 21st century");

Like Perl, the NXLog language does not have a switch statement. Instead, this can be accomplished by using
conditional if-else statements.

Example 46. Emulating switch with if-else

The generated log message various based on the value of the $value field.

if ($value == 1)
Ê log_info("1");
else if ($value == 2)
Ê log_info("2");
else if ($value == 3)
Ê log_info("3");
else
Ê log_info("default");

NOTE The Perl elsif and unless keywords are not supported.

3.4. Variables
A module variable can only be accessed from the same module instance where it was created. A variable is
referenced by a string value and can store a value of any type.

See the create_var(), delete_var(), set_var(), and get_var() procedures.

3.5. Statistical Counters
The following types are available for statistical counters:

COUNT

Added values are aggregated, and the value of the counter is increased if only positive integers are added

NXLog Community Edition Reference Manual Chapter 3. Language

26 © NXLog Ltd. 2018

until the counter is destroyed or indefinitely if the counter has no expiry.

COUNTMIN

This calculates the minimum value of the counter.

COUNTMAX

This calculates the maximum value of the counter.

AVG

This algorithm calculates the average over the specified interval.

AVGMIN

This algorithm calculates the average over the specified interval, and the value of the counter is always the
lowest which was ever calculated during the lifetime of the counter.

AVGMAX

Like AVGMIN, but this returns the highest value calculated during the lifetime of the counter.

RATE

This calculates the value over the specified interval. It can be used to calculate events per second (EPS) values.

RATEMIN

This calculates the value over the specified interval, and returns the lowest rate calculated during the lifetime
of the counter.

RATEMAX

Like RATEMIN, but this returns the highest rate calculated during the lifetime of the counter.

GRAD

This calculates the change of the rate of the counter over the specified interval, which is the gradient.

GRADMIN

This calculates the gradient and returns the lowest gradient calculated during the lifetime of the counter.

GRADMAX

Like GRADMIN, but this returns the highest gradient calculated during the lifetime of the counter.

Chapter 3. Language NXLog Community Edition Reference Manual

© NXLog Ltd. 2018 27

Example 47. Simple Event Correlation Using Statistical Counters

If the number of login failures exceeds 3 within 45 seconds, then an internal log message is generated. This
accomplishes the exact same task as our previous algorithm did with module variables, except that it is a
lot simpler. In addition, this method is more precise, because it uses the timestamp from the log message
instead of relying on the current time; consequently it is also possible to use this for offline log analysis.

if $Message =~ /login failure/
{
Ê # create will not do anything if the counter already exists
Ê create_stat('login_failures', 'RATE', 45, $EventTime);
Ê add_stat('login_failures', 1, $EventTime);
Ê if get_stat('login_failures', $EventTime) >= 3
Ê log_warning(">= 3 login failures detected within 45 seconds");
}

Note that this is still not perfect because the time window used in the rate calculation does not shift, so the
problem described in our previous example also affects this version, and this algorithm may not work in
some situations. For this reason and for better performance, it is better to use the event correlation
module instead; it has a Thresholded rule which uses a sliding window to overcome this problem.

3.6. Functions
The following functions are exported by core.

datetime datetime(integer arg)

Convert the integer argument, expressing the number of microseconds since epoch, to datetime.

integer day(datetime datetime)

Return the day part of the time value.

integer dayofweek(datetime datetime)

Return the number of days since Sunday in the range of 0-6.

integer dayofyear(datetime datetime)

Return the day number of the year in the range of 1-366.

boolean dropped()

Return TRUE if the currently processed event has already been dropped.

datetime fix_year(datetime datetime)

Set the year value to the current year in a datetime which was parsed with a missing year, such as BSD Syslog
or Cisco timestamps.

integer get_stat(string statname)

Return the value of the statistical counter or undef if it does not exist.

integer get_stat(string statname, datetime time)

Return the value of the statistical counter or undef if it does not exist. The time argument specifies the current
time.

unknown get_var(string varname)

Return the value of the variable or undef if it does not exist.

NXLog Community Edition Reference Manual Chapter 3. Language

28 © NXLog Ltd. 2018

ip4addr host_ip()

Return the first non-loopback IP address the hostname resolves to.

ip4addr host_ip(integer nth)

Return the nth non-loopback IP address the hostname resolves to. The nth argument starts from 1.

string hostname()

Return the hostname (short form).

string hostname_fqdn()

Return the FQDN hostname. This function will return the short form if the FQDN hostname cannot be
determined.

integer hour(datetime datetime)

Return the hour part of the time value.

integer integer(unknown arg)

Parse and convert the string argument to an integer. For datetime type it returns the number of
microseconds since epoch.

ip4addr ip4addr(integer arg)

Convert the integer argument to an ip4addr type.

ip4addr ip4addr(integer arg, boolean ntoa)

Convert the integer argument to an ip4addr type. If ntoa is set to true, the integer is assumed to be in
network byte order. Instead of 1.2.3.4 the result will be 4.3.2.1 .

string lc(string arg)

Convert the string to lower case.

integer microsecond(datetime datetime)

Return the microsecond part of the time value.

integer minute(datetime datetime)

Return the minute part of the time value.

integer month(datetime datetime)

Return the month part of the datetime value.

datetime now()

Return the current time.

datetime parsedate(string arg)

Parse a string containing a timestamp. Dates without timezone information are treated as local time. The
current year is used for formats that do not include the year. An undefined datetime type is returned if the
argument cannot be parsed, so that the user can fix the error (for example, $EventTime =
parsedate($somestring); if not defined($EventTime) $EventTime = now();). Supported timestamp
formats are listed below.

RFC 3164 (legacy Syslog) and variations

Chapter 3. Language NXLog Community Edition Reference Manual

© NXLog Ltd. 2018 29

Nov 6 08:49:37
Nov 6 08:49:37
Nov 06 08:49:37
Nov 3 14:50:30.403
Nov 3 14:50:30.403
Nov 03 14:50:30.403
Nov 3 2005 14:50:30
Nov 3 2005 14:50:30
Nov 03 2005 14:50:30
Nov 3 2005 14:50:30.403
Nov 3 2005 14:50:30.403
Nov 03 2005 14:50:30.403

RFC 1123

RFC 1123 compliant dates are also supported, including a couple others which are similar such as those
defined in RFC 822, RFC 850, and RFC 1036.

Sun, 06 Nov 1994 08:49:37 GMT ; RFC 822, updated by RFC 1123
Sunday, 06-Nov-94 08:49:37 GMT ; RFC 850, obsoleted by RFC 1036
Sun Nov 6 08:49:37 1994 ; ANSI C's asctime() format
Sun, 6 Nov 1994 08:49:37 GMT ; RFC 822, updated by RFC 1123
Sun, 06 Nov 94 08:49:37 GMT ; RFC 822
Sun, 6 Nov 94 08:49:37 GMT ; RFC 822
Sun, 6 Nov 94 08:49:37 GMT ; RFC 822
Sun, 06 Nov 94 08:49 GMT ; Unknown
Sun, 6 Nov 94 08:49 GMT ; Unknown
Sun, 06 Nov 94 8:49:37 GMT ; Unknown [Elm 70.85]
Sun, 6 Nov 94 8:49:37 GMT ; Unknown [Elm 70.85]
Mon, 7 Jan 2002 07:21:22 GMT ; Unknown [Postfix]
Sun, 06-Nov-1994 08:49:37 GMT ; RFC 850 with four digit years

The above formats are also recognized when the leading day of week and/or the timezone are omitted.

Apache/NCSA date

This format can be found in Apache access logs and other sources.

24/Aug/2009:16:08:57 +0200

ISO 8601 and RFC 3339

NXLog can parse the ISO format with or without sub-second resolution, and with or without timezone
information. It accepts either a comma (,) or a dot (.) in case there is sub-second resolution.

1977-09-06 01:02:03
1977-09-06 01:02:03.004
1977-09-06T01:02:03.004Z
1977-09-06T01:02:03.004+02:00
2011-5-29 0:3:21
2011-5-29 0:3:21+02:00
2011-5-29 0:3:21.004
2011-5-29 0:3:21.004+02:00

Windows timestamp

This format is YYYYMMDDhhmmss.USEC with an optional timezone offset.

20100426151354.537875-000
20100426151354.537875000

Integer timestamp

This format is XXXXXXXXXX.USEC. The value is expressed as an integer showing the number of seconds

NXLog Community Edition Reference Manual Chapter 3. Language

30 © NXLog Ltd. 2018

elapsed since the epoch UTC. The fractional microsecond part is optional.

1258531221.650359
1258531221

string replace(string subject, string src, string dst)

Replace all occurrences of src with dst in the subject string.

string replace(string subject, string src, string dst, integer count)

Replace count number occurrences of src with dst in the subject string.

integer second(datetime datetime)

Return the second part of the time value.

integer size(string str)

Return the size of the string str in bytes.

string strftime(datetime datetime, string fmt)

Convert a datetime to a string with the given format. See the strftime(3) manual or the Windows strftime
reference for the format specification.

string string(unknown arg)

Convert the argument to a string.

datetime strptime(string input, string fmt)

Convert the string to a datetime with the given format. See the manual of strptime(3) for the format
specification.

string substr(string src, integer from)

Return the string starting at the byte offset specified in from .

string substr(string src, integer from, integer to)

Return a sub-string specified with the starting and ending positions as byte offsets from the beginning of the
string.

string type(unknown arg)

Return the type of the variable, which can be boolean , integer , string , datetime , ip4addr , ip6addr ,
regexp , or binary . For values with the unknown type, it returns undef.

string uc(string arg)

Convert the string to upper case.

integer year(datetime datetime)

Return the year part of the datetime value.

3.7. Procedures
The following procedures are exported by core.

add_stat(string statname, integer value);

Add value to the statistical counter using the current time.

add_stat(string statname, integer value, datetime time);

Add value to the statistical counter using the time specified in the argument named time.

Chapter 3. Language NXLog Community Edition Reference Manual

© NXLog Ltd. 2018 31

https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/strftime-wcsftime-strftime-l-wcsftime-l

add_to_route(string routename);

Copy the currently processed event data to the route specified. This procedure makes a copy of the data. The
original will be processed normally. Note that flow control is explicitly disabled when moving data with
add_to_route() and the data will not be added if the queue of the target module(s) is full.

create_stat(string statname, string type);

Create a module statistical counter with the specified name using the current time. The statistical counter will
be created with an infinite lifetime. The type argument must be one of the following to select the required
algorithm for calculating the value of the statistical counter: COUNT, COUNTMIN, COUNTMAX, AVG, AVGMIN,
AVGMAX, RATE, RATEMIN, RATEMAX, GRAD, GRADMIN, or GRADMAX (see Statistical Counters).

This procedure with two parameters can only be used with COUNT, otherwise the interval parameter must be
specified (see below). This procedure will do nothing if a counter with the specified name already exists.

create_stat(string statname, string type, integer interval);

Create a module statistical counter with the specified name to be calculated over interval seconds and using
the current time. The statistical counter will be created with an infinite lifetime.

create_stat(string statname, string type, integer interval, datetime time);

Create a module statistical counter with the specified name to be calculated over interval seconds and the
time value specified in the time argument. The statistical counter will be created with an infinite lifetime.

create_stat(string statname, string type, integer interval, datetime time, integer
lifetime);

Create a module statistical counter with the specified name to be calculated over interval seconds and the
time value specified in the time argument. The statistical counter will expire after lifetime seconds.

create_stat(string statname, string type, integer interval, datetime time, datetime expiry);

Create a module statistical counter with the specified name to be calculated over interval seconds and the
time value specified in the time argument. The statistical counter will expire at expiry.

create_var(string varname);

Create a module variable with the specified name. The variable will be created with an infinite lifetime.

create_var(string varname, integer lifetime);

Create a module variable with the specified name and the lifetime given in seconds. When the lifetime expires,
the variable will be deleted automatically and get_var(name) will return undef.

create_var(string varname, datetime expiry);

Create a module variable with the specified name. The expiry specifies when the variable should be deleted
automatically.

debug(unknown arg, varargs args);

Print the argument(s) at DEBUG log level. Same as log_debug().

delete(unknown arg);

Delete the field from the event. For example, delete($field) . Note that $field = undef is not the same,
though after both operations the field will be undefined.

delete_var(string varname);

Delete the module variable with the specified name if it exists.

drop();

Drop the event record that is currently being processed. Any further action on the event record will result in a

NXLog Community Edition Reference Manual Chapter 3. Language

32 © NXLog Ltd. 2018

"missing logdata" error.

log_debug(unknown arg, varargs args);

Print the argument(s) at DEBUG log level. Same as debug().

log_error(unknown arg, varargs args);

Print the argument(s) at ERROR log level.

log_info(unknown arg, varargs args);

Print the argument(s) at INFO log level.

log_warning(unknown arg, varargs args);

Print the argument(s) at WARNING log level.

rename_field(string old, string new);

Rename a field. For example, rename_field("old", "new") .

reroute(string routename);

Move the currently processed event data to the route specified. The event data will enter the route as if it was
received by an input module there. Note that flow control is explicitly disabled when moving data with
reroute() and the data will be dropped if the queue of the target module(s) is full.

set_var(string varname, unknown value);

Set the value of a module variable. If the variable does not exist, it will be created with an infinite lifetime.

sleep(integer interval);

Sleep the specified number of microseconds. This procedure is provided for testing purposes primarily. It can
be used as a poor manÕs rate limiting tool, though this use is not recommended.

Chapter 3. Language NXLog Community Edition Reference Manual

© NXLog Ltd. 2018 33

Chapter 4. Extension Modules
Extension modules do not process log messages directly, and for this reason their instances cannot be part of a
route. These modules enhance the features of NXLog in various ways, such as exporting new functions and
procedures or registering additional I/O reader and writer functions (to be used with modules supporting the
InputType and OutputType directives). There are many ways to hook an extension module into the NXLog
engine, as the following modules illustrate.

4.1. Character Set Conversion (xm_charconv)
This module provides tools for converting strings between different character sets (codepages). All the encodings
available to iconv are supported. See iconv -l for a list of encoding names.

4.1.1. Configuration

The xm_charconv module accepts the following directives in addition to the common module directives .

AutodetectCharsets

This optional directive accepts a comma-separated list of character set names. When auto is specified as the
source encoding for convert() or convert_fields() , these character sets will be tried for conversion.

4.1.2. Functions

The following functions are exported by xm_charconv.

string convert(string source, string srcencoding, string dstencoding)

Convert the source string to the encoding specified in dstencoding from srcencoding. The srcencoding
argument can be set to auto to request auto detection.

4.1.3. Procedures

The following procedures are exported by xm_charconv.

convert_fields(string srcencoding, string dstencoding);

Convert all string type fields of a log message from srcencoding to dstencoding. The srcencoding argument can
be set to auto to request auto detection.

4.1.4. Examples

NXLog Community Edition Reference Manual Chapter 4. Extension Modules

34 © NXLog Ltd. 2018

Example 48. Character set auto-detection of various input encodings

This configuration shows an example of character set auto-detection. The input file can contain differently
encoded lines, and the module normalizes output to UTF-8.

nxlog.conf

<Extension charconv >
Ê Module xm_charconv
Ê AutodetectCharsets utf-8, euc-jp, utf-16, utf-32, iso8859-2
</Extension>

<Input filein >
Ê Module im_file
Ê File "tmp/input"
Ê Exec convert_fields("auto", "utf-8");
</Input>

<Output fileout >
Ê Module om_file
Ê File "tmp/output"
</Output>

<Route r >
Ê Path filein = > fileout
</Route>

4.2. Delimiter-Separated Values (xm_csv)
This module provides functions and procedures for working with data formatted as comma-separated values
(CSV). CSV input can be parsed into fields and CSV output can be generated. Delimiters other than the comma
can be used also.

The pm_transformer module provides a simple interface to parse and generate CSV format, but the xm_csv
module exports an API that can be used to solve more complex tasks involving CSV formatted data.

NOTE
It is possible to use more than one xm_csv module instance with different options in order to
support different CSV formats at the same time. For this reason, functions and procedures
exported by the module are public and must be referenced by the module instance name.

4.2.1. Configuration

The xm_csv module accepts the following directives in addition to the common module directives . The Fields
directive is required.

Fields

This mandatory directive accepts a comma-separated list of fields which will be filled from the input parsed.
Field names with or without the dollar sign ($) are accepted. The fields will be stored as strings unless their
types are explicitly specified with the FieldTypes directive.

Delimiter

This optional directive takes a single character (see below) as argument to specify the delimiter character
used to separate fields. The default delimiter character is the comma (,). Note that there is no delimiter after
the last field.

Chapter 4. Extension Modules NXLog Community Edition Reference Manual

© NXLog Ltd. 2018 35

EscapeChar

This optional directive takes a single character (see below) as argument to specify the escape character used
to escape special characters. The escape character is used to prefix the following characters: the escape
character itself, the quote character , and the delimiter character . If EscapeControl is TRUE, the newline (\n),
carriage return (\r), tab (\t), and backspace (\b) control characters are also escaped. The default escape
character is the backslash character (\).

EscapeControl

If this optional boolean directive is set to TRUE, control characters are also escaped. See the EscapeChar
directive for details. The default is TRUE: control characters are escaped. Note that this is necessary to allow
single line CSV field lists which contain line-breaks.

FieldTypes

This optional directive specifies the list of types corresponding to the field names defined in Fields. If
specified, the number of types must match the number of field names specified with Fields. If this directive is
omitted, all fields will be stored as strings . This directive has no effect on the fields-to-CSV conversion.

QuoteChar

This optional directive takes a single character (see below) as argument to specify the quote character used to
enclose fields. If QuoteOptional is TRUE, then only string type fields are quoted. The default is the double-
quote character (").

QuoteMethod

This optional directive can take the following values:

All

All fields will be quoted.

None

Nothing will be quoted. This can be problematic if a field value (typically text that can contain any
character) contains the delimiter character. Make sure that this is escaped or replaced with something
else.

String

Only string type fields will be quoted. This has the same effect as QuoteOptional set to TRUE and is the
default behavior if the QuoteMethod directive is not specified.

Note that this directive only effects CSV generation when using to_csv(). The CSV parser can automatically
detect the quotation.

QuoteOptional

This directive has been deprecated in favor of QuoteMethod , which should be used instead.

UndefValue

This optional directive specifies a string which will be treated as an undefined value. This is particularly useful
when parsing the W3C format where the dash (-) marks an omitted field.

4.2.1.1. Specifying Quote, Escape, and Delimiter Characters

The QuoteChar , EscapeChar, and Delimiter directives can be specified in several ways.

Unquoted single character

Any printable character can be specified as an unquoted character, except for the backslash (\):

Delimiter ;

NXLog Community Edition Reference Manual Chapter 4. Extension Modules

36 © NXLog Ltd. 2018

Control characters

The following non-printable characters can be specified with escape sequences:

\a

audible alert (bell)

\b

backspace

\t

horizontal tab

\n

newline

\v

vertical tab

\f

formfeed

\r

carriage return

For example, to use TAB delimiting:

Delimiter \t

A character in single quotes

The configuration parser strips whitespace, so it is not possible to define a space as the delimiter unless it is
enclosed within quotes:

Delimiter ' '

Printable characters can also be enclosed:

Delimiter ';'

The backslash can be specified when enclosed within quotes:

Delimiter '\'

A character in double quotes

Double quotes can be used like single quotes:

Delimiter " "

The backslash can be specified when enclosed within double quotes:

Delimiter "\"

A hexadecimal ASCII code

Hexadecimal ASCII character codes can also be used by prepending 0x . For example, the space can be
specified as:

Delimiter 0x20

This is equivalent to:

Chapter 4. Extension Modules NXLog Community Edition Reference Manual

© NXLog Ltd. 2018 37

Delimiter " "

4.2.2. Functions

The following functions are exported by xm_csv.

string to_csv()

Convert the specified fields to a single CSV formatted string.

4.2.3. Procedures

The following procedures are exported by xm_csv.

parse_csv();

Parse the $raw_event field as CSV input.

parse_csv(string source);

Parse the given string as CSV format.

to_csv();

Format the specified fields as CSV and put this into the $raw_event field.

4.2.4. Examples

NXLog Community Edition Reference Manual Chapter 4. Extension Modules

38 © NXLog Ltd. 2018

Example 49. Complex CSV Format Conversion

This example shows that the xm_csv module can not only parse and create CSV formatted input and output,
but with multiple xm_csv modules it is also possible to reorder, add, remove, or modify fields before
outputting to a different CSV format.

nxlog.conf

<Extension csv1 >
Ê Module xm_csv
Ê Fields $id, $name, $number
Ê FieldTypes integer, string, integer
Ê Delimiter ,
</Extension>

<Extension csv2 >
Ê Module xm_csv
Ê Fields $id, $number, $name, $date
Ê Delimiter ;
</Extension>

<Input in >
Ê Module im_file
Ê File "tmp/input"
Ê <Exec>
Ê csv1- >parse_csv();
Ê $date = now();
Ê if not defined $number $number = 0;
Ê csv2- >to_csv();
Ê </Exec>
</Input>

<Output out >
Ê Module om_file
Ê File "tmp/output"
</Output>

Input Sample

1, "John K.", 42
2, "Joe F.", 43

Output Sample

1;42;"John K.";2011-01-15 23:45:20
2;43;"Joe F.";2011-01-15 23:45:20

4.3. External Programs (xm_exec)
This module provides two procedures which make it possible to execute external scripts or programs. These two
procedures are provided through this extension module in order to keep the NXLog core small. Also, without this
module loaded an administrator is not able to execute arbitrary scripts.

NOTE

The im_exec and om_exec modules also provide support for running external programs, though
the purpose of these is to pipe data to and read data from programs. The procedures provided
by the xm_exec module do not pipe log message data, but are intended for multiple invocations
(though data can be still passed to the executed script/program as command line arguments).

Chapter 4. Extension Modules NXLog Community Edition Reference Manual

© NXLog Ltd. 2018 39

4.3.1. Configuration

The xm_exec module accepts only the common module directives .

4.3.2. Procedures

The following procedures are exported by xm_exec.

exec(string command, varargs args);

Execute command, passing it the supplied arguments, and wait for it to terminate. The command is executed
in the caller moduleÕs context. Note that the module calling this procedure will block until the process
terminates. Use the exec_async() procedure to avoid this problem. All output written to standard output and
standard error by the spawned process is discarded.

exec_async(string command, varargs args);

This procedure executes the command passing it the supplied arguments and does not wait for it to
terminate.

4.3.3. Examples

Example 50. NXLog Acting as a Cron Daemon

This xm_exec module instance will run the command every second without waiting for it to terminate.

nxlog.conf

<Extension exec >
Ê Module xm_exec
Ê <Schedule>
Ê Every 1 sec
Ê Exec exec_async("/bin/true");
Ê </Schedule>
</Extension>

NXLog Community Edition Reference Manual Chapter 4. Extension Modules

40 © NXLog Ltd. 2018

Example 51. Sending Email Alerts

If the $raw_event field matches the regular expression, an email will be sent.

nxlog.conf

<Extension exec >
Ê Module xm_exec
</Extension>

<Input tcp >
Ê Module im_tcp
Ê Host 0.0.0.0
Ê Port 1514
Ê <Exec>
Ê if $raw_event =~ /alertcondition/
Ê {
Ê exec_async("/bin/sh", "-c", 'echo "' + $Hostname +
Ê '\n\nRawEvent:\n' + $raw_event +
Ê '"|/usr/bin/mail -a "Content-Type: text/plain; charset=UTF-8" -s "ALERT" ' +
Ê 'user@domain.com');
Ê }
Ê </Exec>
</Input>

<Output file >
Ê Module om_file
Ê File "/var/log/messages"
</Output>

<Route tcp_to_file >
Ê Path tcp = > file
</Route>

For another example, see File Rotation Based on Size .

4.4. File Operations (xm_fileop)
This module provides functions and procedures to manipulate files. Coupled with a Schedule block, this module
allows various log rotation and retention policies to be implemented, including:

¥ log file retention based on file size,

¥ log file retention based on file age, and

¥ cyclic log file rotation and retention.

NOTE
Rotating, renaming, or removing the file written by om_file is also supported with the help of the
om_file reopen() procedure.

4.4.1. Configuration

The xm_fileop module accepts only the common module directives .

4.4.2. Functions

The following functions are exported by xm_fileop.

Chapter 4. Extension Modules NXLog Community Edition Reference Manual

© NXLog Ltd. 2018 41

boolean dir_exists(string path)

Return TRUE if path exists and is a directory. On error undef is returned and an error is logged.

string dir_temp_get()

Return the name of a directory suitable as a temporary storage location.

string file_basename(string file)

Strip the directory name from the full file path. For example, basename('/var/log/app.log') will return
app.log .

datetime file_ctime(string file)

Return the creation or inode-changed time of file. On error undef is returned and an error is logged.

string file_dirname(string file)

Return the directory name of the full file path. For example, basename('/var/log/app.log') will return
/var/log . Returns an empty string if file does not contain any directory separators.

boolean file_exists(string file)

Return TRUE if file exists and is a regular file.

integer file_inode(string file)

Return the inode number of file. On error undef is returned and an error is logged.

datetime file_mtime(string file)

Return the last modification time of file. On error undef is returned and an error is logged.

string file_read(string file)

Return the contents of file as a string value. On error undef is returned and an error is logged.

integer file_size(string file)

Return the size of file, in bytes. On error undef is returned and an error is logged.

string file_type(string file)

Return the type of file. The following string values can be returned: FILE, DIR, CHAR, BLOCK, PIPE, LINK,
SOCKET, and UNKNOWN. On error undef is returned and an error is logged.

4.4.3. Procedures

The following procedures are exported by xm_fileop.

dir_make(string path);

Create a directory recursively (like mkdir -p). It succeeds if the directory already exists. An error is logged if
the operation fails.

dir_remove(string file);

Remove the directory from the filesystem.

file_append(string src, string dst);

Append the contents of the file src to dst. The dst file will be created if it does not exist. An error is logged if
the operation fails.

file_chmod(string file, integer mode);

Change the permissions of file. This function is only implemented on POSIX systems where chmod() is

NXLog Community Edition Reference Manual Chapter 4. Extension Modules

42 © NXLog Ltd. 2018

available in the underlying operating system. An error is logged if the operation fails.

file_chown(string file, integer uid, integer gid);

Change the ownership of file. This function is only implemented on POSIX systems where chown() is available
in the underlying operating system. An error is logged if the operation fails.

file_chown(string file, string user, string group);

Change the ownership of file. This function is only implemented on POSIX systems where chown() is available
in the underlying operating system. An error is logged if the operation fails.

file_copy(string src, string dst);

Copy the file src to dst. If file dst already exists, its contents will be overwritten. An error is logged if the
operation fails.

file_cycle(string file);

Do a cyclic rotation on file. The file will be moved to " file.1". If " file.1" already exists it will be moved to " file.2",
and so on. This procedure will reopen the LogFile if it is cycled. An error is logged if the operation fails.

file_cycle(string file, integer max);

Do a cyclic rotation on file. The file will be moved to " file.1". If " file.1" already exists it will be moved to " file.2",
and so on. The max argument specifies the maximum number of files to keep. For example, if max is 5, "file.6"
will be deleted. This procedure will reopen the LogFile if it is cycled. An error is logged if the operation fails.

file_link(string src, string dst);

Create a hardlink from src to dst. An error is logged if the operation fails.

file_remove(string file);

Remove file. It is possible to specify a wildcard in the filename (but not in the path). The backslash (\) must be
escaped if used as the directory separator with wildcards (for example, C:\\test*.log). This procedure
will reopen the LogFile if it is removed. An error is logged if the operation fails.

file_remove(string file, datetime older);

Remove file if its creation time is older than the value specified in older. It is possible to specify a wildcard in
the filename (but not in the path). The backslash (\) must be escaped if used as the directory separator with
wildcards (for example, C:\\test*.log). This procedure will reopen the LogFile if it is removed. An error is
logged if the operation fails.

file_rename(string old, string new);

Rename the file old to new. If the file new exists, it will be overwritten. Moving files or directories across
devices may not be possible. This procedure will reopen the LogFile if it is renamed. An error is logged if the
operation fails.

file_touch(string file);

Update the last modification time of file or create the file if it does not exist. An error is logged if the operation
fails.

file_truncate(string file);

Truncate file to zero length. If the file does not exist, it will be created. An error is logged if the operation fails.

file_truncate(string file, integer offset);

Truncate file to the size specified in offset. If the file does not exist, it will be created. An error is logged if the
operation fails.

file_write(string file, string value);

Chapter 4. Extension Modules NXLog Community Edition Reference Manual

© NXLog Ltd. 2018 43

Write value into file. The file will be created if it does not exist. An error is logged if the operation fails.

4.4.4. Examples

Example 52. Rotation of the Internal LogFile

In this example, the internal log file is rotated based on time and size.

nxlog.conf

#define LOGFILE C:\Program Files (x86)\nxlog\data\nxlog.log
define LOGFILE /var/log/nxlog/nxlog.log

<Extension fileop >
Ê Module xm_fileop

Ê # Check the log file size every hour and rotate if larger than 1 MB
Ê <Schedule>
Ê Every 1 hour
Ê Exec if (file_size('%LOGFILE%') >= 1M) file_cycle('%LOGFILE%', 2);
Ê </Schedule>

Ê # Rotate log file every week on Sunday at midnight
Ê <Schedule>
Ê When @weekly
Ê Exec file_cycle('%LOGFILE%', 2);
Ê </Schedule>
</Extension>

4.5. GELF (xm_gelf)
This module provides an output writer function which can be used to generate output in Graylog Extended Log
Format (GELF) for Graylog2 or GELF compliant tools.

Unlike Syslog format (with Snare Agent, for example), the GELF format contains structured data in JSON so that
the fields are available for analysis. This is especially convenient with sources such as the Windows EventLog
which already generate logs in a structured format.

The xm_gelf module provides the following output writer functions:

OutputType GELF_TCP

This output writer generates GELF for use with TCP (use with the om_tcp output module).

OutputType GELF_UDP

This output writer generates GELF for use with UDP (use with the om_udp output module).

OutputType GELF

This type is equivalent to GELF_UDP.

The GELF output generated by this module includes all fields, except for the $raw_event field and any field having
a leading dot (.) or underscore (_).

Configure NXLog to output GELF formatted data by following these steps:

1. Load the xm_gelf module:

NXLog Community Edition Reference Manual Chapter 4. Extension Modules

44 © NXLog Ltd. 2018

http://graylog2.org
http://docs.graylog.org/en/2.1/pages/gelf.html

<Extension _gelf >
Ê Module xm_gelf
</Extension>

2. Set the OutputType to GELF_UDP in the om_udp output module:

<Output out_udp >
Ê Module om_udp
Ê Host 127.0.0.1
Ê Port 12201
Ê OutputType GELF_UDP
</Output>

Or, for om_tcp , use GELF_TCP:

<Output out_tcp >
Ê Module om_tcp
Ê Host 127.0.0.1
Ê Port 12201
Ê OutputType GELF_TCP
</Output>

4.5.1. Configuration

The xm_gelf module accepts the following directives in addition to the common module directives .

ShortMessageLength

This optional directive can be used to specify the length of the short_message field. This defaults to 64 if the
directive is not explicitly specified. If the field short_message or ShortMessage is present, it will not be
truncated.

UseNullDelimiter

If this optional boolean directive is TRUE, GELF_TCP will use the NUL delimiter. If this directive is FALSE, it will
use the newline delimiter. The default is TRUE.

4.5.2. Examples

Chapter 4. Extension Modules NXLog Community Edition Reference Manual

© NXLog Ltd. 2018 45

Example 53. Sending Windows EventLog to Graylog2 in GELF

The following configuration reads the Windows EventLog and sends it to a Graylog2 server in GELF format.

nxlog.conf

<Extension gelf >
Ê Module xm_gelf
</Extension>

<Input eventlog >
Ê # Use 'im_mseventlog' for Windows XP, 2000 and 2003
Ê Module im_msvistalog
Ê # Uncomment the following to collect specific event logs only
Ê #Query <QueryList> \
Ê # <Query Id =" 0" >\
Ê # <Select Path =" Application " >* </Select> \
Ê # <Select Path =" System " >* </Select> \
Ê # <Select Path =" Security " >* </Select> \
Ê # </Query> \
Ê # </QueryList>
</Input>

<Output udp>
Ê Module om_udp
Ê Host 192.168.1.1
Ê Port 12201
Ê OutputType GELF
</Output>

<Route eventlog_to_udp >
Ê Path eventlog = > udp
</Route>

NXLog Community Edition Reference Manual Chapter 4. Extension Modules

46 © NXLog Ltd. 2018

